IMO Geometry Questions

Level: Intermediate Ref No: M01

[Cayley 2004 Q1] The "star" octagon shown in the diagram is beautifully symmetrical and the centre of the star is at the centre of the circle. If angle NAE $=110^{\circ}$, how big is the angle DNA?

Solution: 20°
[Cayley 2004 Q3] A quadrilateral ABCD has sides AB, BC, CD, DA of length x, y, z and t, respectively. The diagonals $A C$ and $B D$ cross at right angles. Prove that:

$$
x^{2}+z^{2}=y^{2}+t^{2}
$$

Level: Intermediate Ref No: M08

Puzz Points: 15

[Hamilton 2004 Q2] Triangle $A B G$ has a right angle at B. Points C and E lie on side $A G$ and points D and F lie on side $B G$ so that the six line segments $A B, B C, C D, D E, E F$ and $F G$ are equal in length.
Calculate the angle AGB.

Solution: 15°
[Hamilton 2004 Q6] The triangle $A B C$ is right-angled at A, with $A B=6 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$. Points X and Y are situated on $B C$ such that $A B=A Y$ and $A X=X C$. Two isosceles triangles $A B Y$ and $A X C$ are thus created. These triangles overlap, forming the region AXY. Calculate the area of this region.

Solution: $\frac{132}{25}$

Level: Intermediate Ref No: M13
[Maclaurin 2004 Q1] A quadrilateral is enclosed by four straight lines with equations:

$$
\begin{aligned}
& 2 y=x+4 \\
& y=2 x-4 \\
& 2 y=x-2 \\
& y=2 x+2
\end{aligned}
$$

Calculate the area of this quadrilateral.

Solution: 12
[Maclaurin 2004 Q3] A square is constructed inside a rectangle of length a and width b, with the square touching the diagonal of the rectangle as shown in the diagram. If the square has side h, prove that:

$$
\frac{1}{h}=\frac{1}{a}+\frac{1}{b}
$$

[Maclaurin 2004 Q6] The cross section of a tunnel is a circular arc, as shown in the diagram. The maximum height of the tunnel is 10 feet. A vertical strut 9 feet high supports the roof of the tunnel from a point 27 feet along the ground from the side. Calculate the width of the tunnel at ground level.

Solution: 80 feet

Level: Intermediate Ref No: M19
[Cayley 2006 Q1] A rectangular piece of paper is cut into two pieces by a straight line passing through one corner, as shown. Given that area X : area $Y=2: 7$, what is the value of the ratio $a: b$?

> a
b

Solution: 4:5
[Cayley 2006 Q3] In the diagram, rectangles $A B C D$ and $A Z Y X$ are congruent, and $\angle A D B=70^{\circ}$. Find $\angle B M X$.

Solution: 50°
[Hamilton 2006 Q2] In triangle $\mathrm{ABC}, \angle A B C$ is a right angle. Points P and Q lie on AC ; BP is perpendicular to $\mathrm{AC} ; \mathrm{BQ}$ bisects $\angle A B P$. Prove that $\mathrm{CB}=\mathrm{CQ}$.

Solution: Just need to show that $\angle Q B C=\angle B Q C$, i.e. we have an isosceles triangle.
[Hamilton 2006 Q4] A circle is inscribed in a square and a rectangle is placed inside the square but outside the circle. Two sides of the rectangle lie along sides of the square and one vertex lies on the circle, as shown. The rectangle is twice as high as it is wide.

What is the ratio of the area of the square to the area of the rectangle?

Solution: 50:1

Level: Intermediate Ref No: M33
Puzz Points: 20
[Maclaurin 2006 Q3] Two circles are drawn in a rectangle of 6 by 4, such that the larger circle touches three sides of the rectangle, whereas the smaller one only touches 2 . Determine the radius of the smaller circle.

Solution: $8-4 \sqrt{3}$

Level: Intermediate Ref No: M34
Puzz Points: 20
[Maclaurin 2006 Q4] The nonagon shown shaded in the diagram has been made by removing three pieces from an equilateral triangle of side 12. All nine edges of the nonagon are parallel to sides of the triangle. Three edges have lengths 1,2 and 3 as shown. Calculate the length of the perimeter of the nonagon.

[Cayley 2007 Q3] The diagram shows a square $A B C D$ of side 10 units. Line segments $A P, A Q, A R$ and AS divide the square into five regions of equal area, as shown. Calculate the length of $Q R$.

Solution: $\sqrt{8}=2 \sqrt{2}$ units.
Level: Intermediate Ref No: M40
Puzz Points: 10
[Cayley 2007 Q4] How many right-angled triangles can be made by joining three vertices of a cube?

Solution: 48

Level: Intermediate Ref No: M41

Puzz Points: 13
[Cayley 2007 Q 5] In a quadrilateral $\mathrm{ABCD}, \mathrm{AB}=\mathrm{BC}, \angle B A C=60^{\circ}, \angle C A D=40^{\circ}, \mathrm{AC}$ and BD cross at X and $\angle B X C=100^{\circ}$.

Calculate $\angle B D C$.

Solution: 30°

Level: Intermediate Ref No: M45
Puzz Points: 15
[Hamilton 2007 Q3] The diagram shows four circles of radius 1 placed inside a square so that they are tangential to the sides of the square at the midpoints of the sides, and to each other. Calculate the shaded area.

Solution: $8(1+\sqrt{2})-3 \pi$
[Hamilton 2007 Q5] The diagram shows a rectangle ABCD inscribed inside a triangle PQR. The side, $A B$, of the rectangle is one third of the perpendicular height of the triangle from P to $Q R$. What is the ratio of the area of the rectangle to the area of the triangle?

Solution: 4: 9
[Maclaurin 2007 Q2] The diagram shows a circle of radius 2 and a square. The circle touches two sides of the square and passes through one corner of the square. The area of the region shaded black (inside the square but outside the circle) is X and the area of the region shaded grey (inside the circle but outside the square) is Y .

What is the value of $Y-X$?

Solution: $4 \pi-6-4 \sqrt{2}$

Level: Intermediate Ref No: M52
Puzz Points: 20
[Maclaurin 2007 Q4] The diagram shows a triangle in which the altitude from A divides the base, BC , in the ratio $18: 7$.

Find the ratio in which the base is divided by a line parallel to the altitude which cuts the triangle into two equal areas.

Solution: 3: 2
[Maclaurin 2007 Q5] The coordinates of three vertices of a cube are $(4,0,3),(6,4,1)$ and $(2,8,5)$. Find the coordinates of a fourth vertex.

Solution: (0, 4, 7)

Level: Intermediate Ref No: M56
Puzz Points: 10

The diagram shows a regular pentagon $C D E F G$ inside a trapezium $A B C D$.
Prove that $A B=2 \times C D$.

Level: Intermediate Ref No: M58

Puzz Points: 10
[Cayley 2011 Q4] The diagram shows nine $1 \mathrm{~cm} \times 1 \mathrm{~cm}$ squares and a circle. The circle passes through the centres of the four corner squares.

What is the area of the shaded region - inside two squares but outside the circle?

Solution: $\frac{9-2 \pi}{4}$
Level: Intermediate Ref No: M62
Puzz Points: 15
[Hamilton 2011 Q2] The diagram shows two equilateral triangles. The angle marked x° are equal.
Prove that $x>30$.

Solution: Angle at bottom of left triangle, on the right side of the point, is $2 x-60$. Since $2 x-60>$ 0 , then $x>30$.
[Hamilton 2011 Q4] A square just fits within a circle, which itself just fits within another square, as shown in the diagram. Find the ratio of the two shaded areas.

Solution: $(4-\pi):(\pi-2)$
[Maclaurin 2011 Q3] The diagrams show a rectangle that just fits inside right-angled triangle $A B C$ in two different ways. One side of the triangle has length a.

Prove that the perimeter of the rectangle is $2 a$.

Three circles touch the same straight line and touch each other, as shown.
Prove that the radii a, b, and c, where c is smallest, satisfy the equation:

$$
\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}=\frac{1}{\sqrt{c}}
$$

[Cayley 2008 Q2] A hexagon is made by cutting a small equilateral triangle from each corner of a larger equilateral triangle. The sides of the smaller triangles have lengths 1, 2 and 3 units. The lengths of the perimeters of the hexagon and the original triangle are in the ratio 5:7.

What fraction of the area of the original triangle remains?

Solution: $\frac{5}{7}$
[Cayley 2008 Q3] In the rectangle $A B C D$ the midpoint of $A B$ is M and $A B: A D=2: 1$. The point X is such that triangle MDX is equilateral, with X and A lying on opposite sides of the line MD. Find the value of $\angle X C D$.

Solution: 30°

Level: Intermediate Ref No: M77
Puzz Points: 13
[Cayley 2008 Q5] A kite has sides AB and AD of length 25 cm and sides $C B$ and CD of length 39 cm . The perpendicular distance from B to $A D$ is 24 cm . The perpendicular distance from B to $C D$ is $h \mathrm{~cm}$.

Find the value of h.

Solution: $h=\frac{360}{13}$
[Cayley 2008 Q6] A regular tetrahedron ABCD has edges of length 2 units. The midpoint of the edge $A B$ is M and the midpoint of the edge $C D$ is N.
Find the exact length of the segment $M N$.

Solution: $\sqrt{2}$

Level: Intermediate Ref No: M79
Puzz Points: 15

A regular octagon with sides of length a is inscribed in a square with sides of length 1 , as shown.
Prove that $a^{2}+2 a=1$.

[Hamilton 2008 Q4] A triangle is bounded by the lines whose equations are $y=-x-1, y=2 x-1$ and $y=k$, where k is a positive integer.
For what values of k is the area of the triangle less than 2008?

Solution: $1 \leq k \leq 50$
Level: Intermediate Ref No: M82
Puzz Points: 18
[Hamilton 2008 Q5] Two congruent rectangles have a common vertex and overlap as shown in the diagram. What is the total shaded area?

[Maclaurin 2008 Q2] The diagram shows a regular pentagon $A B C D E$. A circle is drawn such that $A B$ is a tangent to the circle at A and $C D$ is a tangent to the circle at D. The side $A E$ of the pentagon is extended to meet the circumference of the circle at F.

Prove that DE $=$ DF.

Solution: Since $C D$ and $A B$ are tangents to the circle, it would seem sensible to add radii connecting A and D to the centre of the circle. Appropriate use of circle theorems and interior angles of regular polygon allows us to eventually show that $\angle E F D=\angle F E D$.

Level: Intermediate Ref No: M87
Puzz Points: 20
[Maclaurin 2008 Q4] A circle is inscribed in a right-angled triangle, as shown. The point of contact of the circle and the hypotenuse divides the hypotenuse into lengths x and y.

Prove that the area of the triangle is equal to $x y$.

[Maclaurin 2008 Q5] An ant lives on the surface of a cuboid which has points X, Y and Z on three adjacent faces.

The ant travels between X, Y and Z along the shortest possible path between each pair of points. The angles x°, y° and z° are the angles between the parts of the ant's path, as shown.

Prove that $x+y+z=270$.

Level: Intermediate Ref No: M91

Puzz Points: 10
[Cayley 2009 Q2] The boundary of a shaded figure consists of four semicircular arcs whose radii are all different. The centre of each arc lies on the line $A B$, which is 10 cm long.

What is the length of the perimeter of the figure.

Solution: $10 \pi \mathrm{~cm}$
[Cayley 2009 Q4] In a rectangle $A B C D$, the side $A B$ has length $\sqrt{2}$ and the side $A D$ has length 1 . Let the circle with centre B and passing through C meet $A B$ at X.

Find $\angle A D X$ (in degrees).

Solution: $\angle A D X=22 \frac{1}{2}{ }^{\circ}$
[Hamilton 2009 Q3] In the diagram, ABCD is a rectangle with $A B=16 \mathrm{~cm}$ and $B C=12 \mathrm{~cm}$. Points E and F lie on sides $A B$ and $C D$ so that $A E C F$ is a rhombus.

What is the length of EF?

Solution: 15
[Hamilon 2009 Q5] The diagram shows a triangle PTU inscribed in a square PQRS. Each of the marked angles at P is equal to 30°.

Prove that the area of the triangle PTU is one third of the area of the square PQRS.

[Maclaurin 2009 Q4] In a trapezium $A B C D$ the sides $A B$ and $D C$ are parallel and $\angle B A D=\angle A B C<$ 90°. Point P lies on $A B$ with $\angle C P D=\angle B A D$.

Prove that $P C^{2}+P D^{2}=A B \times D C$.

Level: Intermediate Ref No: M106

Puzz Points: 23
[Maclaurin 2009 Q6] In the figure, p, q, r and s are the lengths of the four arcs which together form the circumference of the circle.

Find, in simplified form, an expression for s in terms of p, q and r.

Solution: Length of each arc is proportional to the angle subtended at the centre. With appropriate choice of radius we can make p, q, r, s these angles. Thus $p+q+r+s=360$. We also have angle sum in a quadrilateral where one angle is q and another 90°, and using two isosceles triangles, we find $p+2 q+r=180$. Using these two equations, we obtain $s=p+3 q+r$
[Cayley 2010 Q2] The diagram shows a square $A B C D$ and an equilateral triangle $A B E$. The point F lies on $B C$ so that $E C=E F$.

Calculate the angle BEF.

Solution: 45°
[Cayley 2010 Q5] A square sheet of paper $A B C D$ is folded along FG, as shown, so that the corner B is folded onto the midpoint M of $C D$. Prove that the sides of triangle GCM have lengths in the ratio 3: 4: 5 .

Solution: Let $a=C G$ and $C M=b$. Then using Pythagoras on $\triangle C G M, a^{2}+b^{2}=(2 b-a)^{2}$.
Simplifying we get $a=\frac{3}{4} b$ and $G M=2 b-a=2 b-\frac{3}{4} b=\frac{5}{4} b$.
$\frac{3}{4} b: b: \frac{5}{4} b=3 b: 4 b: 5 b=3: 4: 5$.
[Hamilton 2010 Q2] The diagram shows a triangle and two of its angle bisectors.
What is the value of x ?

Solution: $x=60^{\circ}$

Level: Intermediate Ref No: M115
Puzz Points: 15
[Hamilton 2010 Q4] The diagram shows a quarter-circle with centre O and two semicircular arcs with diameters OA and OB.

Calculate the ratio of the area of the region shaded grey to the area of the region shaded black.

Solution: 1: 1
[Hamilton 2010 Q5] The diagram shows three touching circles, whose radii are a, b and c, and whose centres are at the vertices Q, R and S of a rectangle QRST . The fourth vertex T of the rectangle lies on the circle with centre S.

Find the ratio $a: b: c$.

Solution: $a: b: c=2: 1: 3$
[Maclaurin 2010 Q2] The diagram shows a regular heptagon, a regular decagon and a regular 15-gon with an edge in common.

Find the size of angle $X Y Z$.

Solution: $\angle X Y Z=30^{\circ}$

Level: Intermediate
Ref No: M121
Puzz Points: 20
[Maclaurin 2010 Q4] The diameter $A D$ of a circle has length 4. The points B and C lie on the circle, as shown, so that $A B=B C=1$.

Find the length of $C D$.

Solution: $C D=\frac{7}{2}$
[Maclaurin 2010 Q5] The diagram shows a rectangle divided into eight regions by four straight lines. Three of the regions have areas 1,2 and 3 , as shown.

What is the area of the shaded quadrilateral?

Solution: 6

[Cayley 2005 Q2] When two congruent isosceles triangles are joined to form a parallelogram, as shown in the first diagram, the perimeter of the parallelogram is 3 cm longer than the perimeter of one of the triangles.

When the same two triangles are joined to form a rhombus, as shown in the second diagram, the perimeter of the rhombus is 7 cm longer than the perimeter of one of the triangles.

What is the perimeter of one of the triangles?

Solution: 13 cm
[Cayley 2005 Q3] In triangle $A B C$, angle B is a right angle and X is the point on $B C$ so that $B X: X C=$ 5: 4. Also, the length of $A B$ is three times the length of $C X$ and the area of triangle $C X A$ is $54 \mathrm{~cm}^{2}$. Calculate the length of the perimeter of triangle $C X A$.

Solution: 48 cm
[Cayley 2005 Q5] In the diagram, O is the centre of the circle and the straight lines AOBP and RQP meet at P. The length of $P Q$ is equal to the radius of the circle. Prove that

$$
\angle A O R=3 \times \angle B O Q
$$

[Hamilton 2005 Q2] The region shown shaded in the diagram is bounded by three touching circles of radius 1 and the tangent to two of the circles.

Calculate the perimeter of the shaded region.

Solution: $2 \pi+2$

Level: Intermediate Ref No: M132

Puzz Points: 15
[Hamilton 2005 Q3] The shape shown in the diagram (not to scale) has a perimeter of length 72 cm and an area equal to $147 \mathrm{~cm}^{2}$. Calculate the value of a.

Solution: $a=9$
[Hamilton 2005 Q5] The rectangle $P Q R S$ represents a sheet of A4 paper, which means that $P Q: P S=\sqrt{2}: 1$.

The rectangle is folded, as shown, so that Q comes to a point X on $S R$ and the fold line $P Y$ passes though the corner P. Taking the length of $P S$ to be 1 unit, find the lengths of the three sides of the triangle $R X Y$.

Solution: $X Y=2-\sqrt{2}$ and $R Y=R X=\sqrt{2}-1$
[Maclaurin 2005 Q5] In the diagram, X is the point of intersection of lines drawn from the corners C and D of square $A B C D$ to the midpoints M and N of sides $A B$ and $B C$. Prove that the triangle $M X D$ is right-angled with sides in the ratio 3:4:5.

Solution: As $\triangle X N C$ and $\triangle B M C$ are similar, it follows $\triangle M X D=90^{\circ}$. If side of square is 2 , then using Pythagoras, $D M=\sqrt{5}$. From similar triangles we find $X N=\frac{\sqrt{5}}{5}$ and thus $D X=\frac{4 \sqrt{5}}{5}$. Hence ratio $D X: D M=4: 5$ and $\triangle M X D$ is right-angled, three sides form ratio 3:4:5.

Level: Intermediate Ref No: M141
Puzz Points: 23
[Maclaurin 2005 Q6] A sandcastle has a cylindrical base, on top of which is a second smaller cylinder, with a third even smaller cylinder on top. The three circular cylinders have the same height, and their radii are in the ratio $3: 2$: 1 . The height of each cylinder is equal to the radius of the smallest cylinder.

Exactly 24 full buckets of sand were used to construct the sandcastle. The bucket is in the form of a frustum (part of a cone, as shown), whose larger radius equals its perpendicular height, and is twice its smaller radius.

Find the ratio of the total height of the sandcastle to that of the bucket.

Solution: 3: 1

